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The best uniform approximation to the function !xI P, f3>0, on [-1,1] by any
of the standard classes of functions of approximation theory has an asymptotic
error of at best O(e-< ,'-;;). where n is the dimension of the space of approximating
functions. We exhibit a class of Sinc basis functions for which this error decays at
the faster rate Ole-c. log n), uniformly for all 0 < f30 <:; f3 <:; Pl' 'r 1991 Academic Press, Inc,

1. INTRODUCTION

One of the basic questions of approximation theory is the following:
Given a function f, a norm, and a class S of approximating functions, how
well can f be approximated in this norm by functions in S? This question
becomes especially interesting for nonsmooth functions.

For the function Ixl fi, f3 > 0, on the interval [-1, 1], and the uniform
(or Chebyshev) norm, the answer is known for many classes of functions,
including the standard polynomials, piecewise polynomials, and rational
functions.

In the best of these cases, the error of the best uniform approximation
to Ixl fi decays like O(e -c "i';;) as n ~ 'YJ, where n is the dimension of the
space of approximating functions, or more generally the number of free
parameters in the class of approximating functions.

In this paper, we will exhibit a linear space of functions for which the
error of the best uniform approximation to Ixl fi behaves like O(e-cn:logn),
uniformly for all f3 with 0 < f3o':;; f3 .:;; f31' This is an interesting application
of the theory of approximation with Sine functions [to].

Section 2 briefly outlines the history of this problem and summarizes
known results. In section 3, we will review the pertinent parts of Sine
approximation. Section 4, then, contains the main result of this paper, an
application of Sine methods to the problem of uniform approximation of
Ixl fi on [ -1, 1].
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2. HISTORY A~D PREVIOCS RESL:LTS

In 1908, de La Vallee Poussin posed the problem of estimating the error
of the best uniform approximation by polynomials to the function Ix! on
the interval [-1, 1]. The problem was solved by Bernstein in 1911 and
published in [1]. If E" (f) denotes the error of the best approximation to
f by polynomials of order n (that is, degree (n - 1)) or, [ - 1, 1J, ther:.

lim 2nE2,,{ Ixi) = i.,
n -+ x

where i. ::::: 0.282 is a constant. Thus,

as n -+ x.

The error of the best approximation of Ix! p. 0 < [3 < 1, on [ - 1, 1J by
polynomials was also determined by Bernstein [2J to be

Ii---+X

where c([3) is a constant depending on [3, so that

as 11 -+ X.

In 1964, following a suggestion by H. S. Shapiro, Newman [8J proved
that

where R,,(f) is the error of the best approximation to f on [ -1, 1J by
rational functions of order n (that is, numerator and denominator are both
polynomials of order n).

Newman's bound was improved several times by Goncar [7J, Bulanov [4J
and Vjaceslavov [11, 12J to

where c is a constant. Thus.

as n -+ x.

For !xi fJ , {3>0, {3 not an integer, the error is

(GaneIius [6]).
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Rice [9] investigated the case of approximation by splines of fixed order
k, but a variable number n of knots. If Sn,df) denotes the error of the best
approximation to f on [-1, 1] by splines of order k with n knots, he
showed that

so that

as n -4 '::D.

For splines with a variable number of knots and variable order k i on the
ith subinterval, but fixed total order N = L: k i the error Ss of the best
approximation is (deVore and Scherer [5])

C2(fJ) N- 2{3 -l( j2 - 1)2 ,-/N{3 :( S.v( Ixl (3) :( c1(fJ)(j2 - 1)2 '-'NP,

so that asymptotically

SN( Ixl(3) = O(e- C ,-/>:; + O(log ,V)),

where C = -2.JP 10g(j2 -1).
Approximation of ixl by piecewise polynomials is, of course, trivial.
Overall, we see that both Ixl and Ixl (3 can be approximated with an

asymptotic error of at best O(e - C 'Vi';;') by' any set of these classical functions
with n degrees of freedom.

3. SINe INTERPOLAnON

Most of the results in this section are well known and have been
summarized in Stenger [10]. We will state the relevant theorems, but
include the proof of only one of them. Theorem 3.5 is not published
elsewhere, and will need to refer to its proof in Section 4.

Let f be a function in L 2(:R) and analytic in a neighborhood of :R in iC.
Whittaker's cardinal function C(f h) is defined by

x

C(f h)(x) = L f(kh) S(k, h)(x),
k~ -x

whenever this series converges. Here h is a positive constant, and

(k h) x) = sin[(n/h)(x-kh)]
S ,{- (njh)(x-kh)'

The function C(f, h) was first used in this form by Borel [3] in 1899, in
the study of complex power series. Its use in interpolation dates back to
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1915, in the work of E. T. Whittaker [13] and his son J. M. Whittaker
[14, 15]. C(f h) is the unique function which interpolates f at the points
kh, k E Z, and whose Fourier transform has support in [ - nih, nih].

The use of C(f h) and the truncated series CII(.f, h) (defined below) to

approximate a function f was studied by F. Stenger and others (see [lOJ
for a survey). Many formulas can be derived by term by term integration,
differentiation, Fourier transforms, Hilbert transforms, etc., along with
appropriate mappings of these formulas to intervals other than ( - x, x ).
These formulas are collectively referred to as Sine methods.

A class of functions for which Sinc interpolation is very accurate is
defined as follows. Let D d , d>O, be the domain D d = {x+iy: iY! <d} in
the complex plane iC (see Fig. 1). Let B(Dd) be the family of all functions
which are analytic in D d and such that

and such that

.d

j if(x + iy)1 dy -4°
-d

as x -4 ±X·.

THEOREM 3.1. If fEB(D d ), then

Pf C(f h)11 ~ N(f, Dd)
II - , I xc '" J d . h( d")_IT SIn IT ;n,

In practice, we have to truncate the infinite series CU h) at some point
and replace it by

"______ Vd

Cn(f h) = L f(kh) S(k, h).
k= -11

, -- ~ I, I, -- ----+, -
L

, ,
, , -- !J.d, --

I
, , - d- "

+--- I, ,
'V, , , I

Z - Plane W - Plane

FIG.!. The domains ,1" and Dei'

64066 t-4



48 FRITZ KEINERT

The optimal place to do this is where the series truncation error
is approximately equal to the discretization error Ilf - C(f, h)ll. For
exponentially decaying functions this leads to the following theorem.

THEORE\f 3.2. If fEB(D d ) and If(x)1 :S:;ce-~lxl, xEIR, where :x, care
positive constants, then by choosing h = (nd/xn )1.'2 we obtain

Ilf- C,,(f, h)II",:s:; Cnl':2e-("d~,,)12,

where C depends only on N(f, Dd), d, c, :x, but not on n.

Thus, we can approximate exponentially decaying functions in the
class B(Dd) with a uniform error which behaves asymptotically like
O(~ e- C

,,';;).

Other functions with only polynomial decay at infinity can be approximated
equally well if they possess a larger region of analyticity.

Let L1 d be the domain

where 0 < d < n/2 (see Fig. 1). ~_

bet tP(z) = sinh -I z = log(z +J 1+ Z2), where we use the branches of
Jz,log(z) which are real on the positive real axis and slitted along the
negative real axis. Let ljJ( w) = tP -I (w) = sinh( w). tP maps L1 d conformally
onto D d • The real axis is mapped into itself.

We can find an approximation to f(z) on IR by approximating f(ljJ(w))
in the w-plane. This leads to

f(z)>:::C(foljJ,h)°tP(z)= I f(Zk)S(k,h)ctP(z),
n= -'X;,

where Zk=ljJ(kh) = sinh(kh).
Let B(L1 d ) be the family of all functions which are analytic in L1 d and

such that

N(f c ljJ, Dd) < ac

and

.dI If(ljJ(x+iy))1 dy--+O
'-d

From Theorem 3.1 we get immediately

as x --+ ±x:.
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THEOREM 3.3. If f E B( L1 d), then

The condition

is equivalent to

and Theorem 3.2 becomes

THEORBf 3.4. If fEB(L1 d J and If(xJ!~c(1+!xi)-\ xEiR, where7o, C

are positire constants, then by choosing h = (nd!:xn)!'2 \Fe obtain

where C depends on N(f, L1 d), d, c, :x, but not on n.

If it turns out that if f has both the larger region of analyticity L1 d and
exponential decay on iR, we can get a faster rate of convergence.

TmOREM 3.5. If f E B(L1 d) and If(x)1 ~ ce - x Ix, X E!R, lI'here 7., care
positii'e constants, then by choosing h = log l1/n, the interpolation error
satisfies

,V(f"" D \
"f-C (fo'" h)o"'l ~" ''/', d) -"dn!cgn

n '/', '/':0"" 4nd e .

Proof The series truncation error T" is

Tn = IICU 0 t/f, h): r/J - Cn(f 0 t/f, il): r/Jli x

~sup L IF(zk)! IS(k, h)osinh- 1(x)1
XE R Ik ~1l + 1

~ L IF(zdi
~kl ~n+ 1

x
~ 2c L e -~ sinh(kh I

2c ("x 7 • ( ,

~ I h:x COSh(hX)e-XSmh,hx; dx
het. cosh(nh) • n

2c---- e - y. ~mh(llh)

het. cosh(nh) .
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while from Theorem 3.3 the discretization error E is

If h = log n/n, then for large n

cosh(nh) ~ sinh(nh) ~ n12;

thus asymptotically

4c .T ':::: __ e- cxn.2

n ---= rxlog n '

N(/~ ./, D ) V(/c ./, D )E ,:::: ~ '1', d - "d, h _ " 'I' , d - "dn:log n

---= 4nd e - 4nd e .

As n --+ x, Tn goes to zero much faster than E, so the total error is
asymptotically bounded by E. I

4. ApPLICATIOK TO ApPROXI~fATIO~ THEORY

Let us now consider the approximation of the function lxiii, f3 > 0, on
[ -1, 1]. (The case f3 = 1 requires no special treatment). Through the
transformation

z = cosh -I C-~I) sign(x) +-+ x = (l/cosh(z)) sign(z)

this is equivalent to the approximation of I(z) = l/coshli(z) on the real line.
1 is analytic in the complex plane slitted from i to i,x; and from - i to
-ix, and decays like e- li1xl on the real line.

The interpolation formula reads in this case

1 n 1
-hli~ L h li(' h(kl))S(k,h)csinh-l(z)
cos z k~ -n cos Sill 1

or
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We will now show that f(z) = t:coshli(z) satisfies the conditions of
Theorem 3.5 with d = 1.

From the identity

Icosh(sinh(x + iy) W= cosh2 [sinh x cos yJ cos 2 [cosh x sin yJ

+ sinh2 [sinh x cos yJ sin 2 [cosh x sin yJ

:;:, sinh 2 [sinh x cos yJ

we see than on the lines {x ± i: x ElM} the absolute value of the function
g( w) = l/cosh(sinh( 11')) is greater than 1, but bounded above, for w= x ± I,
x near 0, and decreases exponentially for large Ixi. Given any 0 < fJo < Pi'
we can estimate Ig(w)IP by Ig(w):lil, where !g(w)1 > 1, and by !g(;r)t lio ,
where Ig( 11')1 ~ 1, to find that

I 1 \
N ( Ii' , D, )~ J,I

\ cosh (smh z) . j

uniformly for all °< f3 0 ~ (J ~ (J 1 .

Let En(!xl li ) be the error of the uniform best approximation to ixi f on
[ -1, 1J by linear combinations of the basis functions

B () S(k h) . h - 1 ( • - Ii 1 \ \
n.k X = , 0 sin cosn i -I-, I I,

\IX~) )

where h = log nin, k = -n, ..., n.
The proof of Theorem 3.5 s~ows that asymptotically

l1!f
E (ixl li ) ~ - e-mi,logn

fI I '" 4n '

uniformly for °< (Jo ~ (J ~ (J l'
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